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Abstract
Motorcyclists are vulnerable highway users. Unlike passenger vehicle occupants, motorcycle riders do not have either protec-
tive structural surrounding or the advanced restraints that are mandatory safety features in cars and light trucks. Per vehicle
mile traveled, motorcyclist fatalities occurred 27 times more frequently than passenger car occupant fatalities in traffic
crashes. In addition, there were 4,976 motorcycle crash-related fatalities in the U.S. in 2014—more than twice the number of
motorcycle rider fatalities that occurred in 1997. It shows that, in addition to current efforts, research needs to be con-
ducted with additional resources and in newer directions. This paper investigated five years (2010–2014) of Louisiana at-fault
motorcycle rider-involved crashes by using deep learning, which is a competent tool for mapping a high-multidimensional
input into a smaller multidimensional output. The current study contributes to the existing injury severity modeling literature
by developing a deep learning framework, named as DeepScooter, to predict motorcycle-involved crash severities. The final
deep learning model can predict severity types with 100% accuracy with training data, and with 94% accuracy with test data,
which is not attainable by using a statistical method or machine learning algorithm. The intensity of severities was found to be
more likely associated with rider ejection, two-way roadways with no physical separation, curved aligned roadways, and
weekends. It is anticipated that the DeepScooter framework and the findings will provide significant contributions to the area
of motorcycle safety.

Typically identified as ‘‘vulnerable roadway users,’’
motorcyclists are an at-risk group of roadway users
whose death rates have consistently remained higher than
other vehicle-based roadway users. In 2014 alone, motor-
cyclist fatalities ‘‘occurred 27 times more frequently than
fatalities in other vehicles’’ with 4,976 motorcycle crash-
related fatalities in the U.S. This is more than twice the
number of motorcycle rider fatalities that occurred in
1997, and contrasts the 27% reduction in the number of
fatalities involving passenger cars and light trucks (1).

Motorcycle crashes represent 5% of all fatal crashes
in Louisiana each year, and yet only represent 1% of all
total crashes. In 2016, 98 fatal crashes (30% higher than
2010 statistics) involved motorcycles (2). The conven-
tional approach to crash-severity analysis has been to
establish associations between traffic and driver charac-
teristics, roadway and environment conditions, and crash
occurrence. The shortcoming of most of the models
developed using this approach is that they rely on aggre-
gate measures and general inferences. In addition, identi-
fying contributing factors using observational data
comprises a wide variety of associations because of the
assumptions considered during different modeling

techniques. Thus, it is essential to determine the influence
of patterns of associated factors with crash severity. The
2010–2014 traffic crash data associated with at-fault
motorcycle riders for Louisiana were used in this study.
This study restricted the deep learning framework devel-
opment by analyzing only at-fault motorcycle rider
crashes because not-at-fault motorcycle rider crashes
involve other vehicle drivers’ driving traits, which is out-
side the scope of the current study. A deep learning
framework ‘‘DeepScooter’’ was developed to better pre-
dict injury outcomes from the significant factors associ-
ated with motorcycle crashes.
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Earlier Work and Research Context

The most prominent area of transportation safety analysis
are crash frequency analysis (count data problem), and
injury-severity analysis (classification problem). Lord and
Mannering provided a detailed research synthesis on crash
count data and related methods and limitations for exam-
ining such data (3). Savolainen et al. presented a similar
assessment on injury-severity analysis (4). Recently,
Mannering and Bhat extended and bridged both of these
studies (5). Mannering et al.’s study presented a detailed
discussion of unobserved heterogeneity in crash data anal-
ysis along with their strengths and weaknesses (6).

Research and analysis of motorcycle crashes through-
out the years has provided an abundance of valuable
and important information to assist with the overall need
to reduce motorcyclists’ injuries and deaths caused by
crashes. Rider variables such as age, gender, and impair-
ment, for example, have consistently been identified in
the literature to influence the likelihood of increased
crash severity. Researchers have identified significant
relationships between the age of a rider and increased
crash-severity outcomes in which older riders (over the
age of 25), although less likely to be at fault in a colli-
sion, are more likely to be severely injured in crashes
compared with younger riders (7–13). Male riders have
lower probabilities of being severely injured in a crash
compared with females, but on average have a higher
likelihood of being fatally injured in a crash (7, 8, 14).

Intoxicated driving has been identified as a significant
contributor to motorcycle crash severity. Crashes involv-
ing impaired riders have been found to be more severe
with a higher risk of fatal or major injury outcomes than
crashes involving non-impaired riders (10, 15–18).
Research has shown that impaired motorcyclists are
more likely to be involved in single-vehicle crashes, be at
fault, and less likely to be wearing a helmet at the time of
the crash, which can affect crash severity (9–10, 13, 15).

Helmet use has been identified throughout several
studies as a significant variable in motorcycle crash
severity, in which the likelihood of a fatality or the sever-
ity of a crash is higher when a helmet is not worn (8–10,
13, 14). Crashes in which a motorcyclist is wearing a hel-
met have been associated with reduced chances of severe
or fatal injuries in both rural or urban environments,
decreases in injuries sustained in both single and multi-
vehicle crashes, and reduced frequency of severe injuries
(7, 12–14, 16, 19).

Temporal factors such as season, day of the week
(weekend vs. weekday), and time of day at which motor-
cycle crashes occurred have also been linked to motor-
cycle crash-severity outcomes in the literature.
Motorcycle crashes that occur at night (between the
hours of 8 p.m. and 6 p.m.) or early morning hours, on
weekends, during the early months of the rider ‘‘season’’

or summer months have been shown to have higher fatal
and severe injury probabilities (10, 12–14, 20, 21). For
example, Savolainen and Mannering found that crashes
that occurred in April and July had a 111% and 98%
greater probability of being fatal. Later months also
showed a lower likelihood of protective gear use because
of higher temperatures (14).

Several geometric variables have been identified in the
literature to contribute to motorcycle crash-severity out-
comes including roadway type, light conditions, posted
speeds, roadway features such as curves or T-junctions,
and weather. According to the literature, roadways that
have the following characteristics significantly influence
motorcycle crash severity: two-lane roads, farm to mar-
ket roads, curved roads, looped or ‘‘lollipop’’ designed
roads, and T-junction roads controlled by ‘‘stop, give-
way signs or markings,’’ (7, 9, 10, 16, 19–22). Motorcycle
crashes that occurred on highways, near driveways, inter-
sections, or signalized intersections were also found to
influence crash severity, as it is estimated that these fac-
tors negatively affect a driver’s ability to see a motorcy-
clist (9, 23). Crashes that occurred in rural localities were
also significantly linked to motorcycle crash severity,
which may be because of overall higher posted speeds,
roadway geometry, the absence of streetlights, and a
higher propensity for two-lane roadways (16, 18).

Motorcycle injury severity has also been significantly
linked to speed. Roadways with higher posted speeds or
motorcycle crashes that occur at ‘‘unsafe speeds,’’ where
speed is listed as the primary contributing factor or
posted speed limits are higher than 55mph, have been
shown to increase the probability of a fatality and more
severe injuries (10, 18, 20, 22). For example, Savolainen
and Mannering found a 212% increase in the probability
of a fatality when the crash citation involved the factor
‘‘unsafe speed’’ (6). This is true for both single-vehicle
crashes and multi-vehicle crashes (13, 14, 18).

Motorcycle crashes have been found to be more severe
during daytime weather versus wet or rainy weather (7,
10, 13). Savolainen and Mannering posit this may be as a
result of lower speeds maintained by riders while driving
through wet or rainy conditions, in which riders may
exhibit more caution and lower speeds as they adjust to
‘‘perceived higher risk’’ on wet roadways versus dry (7).

Overview of Models Used to Analyze Crash Severity

Several modeling approaches have been applied through-
out the literature to analyze crash severity by examining
injury-severity levels related to the various factors dis-
cussed in the previous paragraphs. This analysis will pro-
vide a snapshot of models used in the literature review
and background of the research works in this paper.

Many studies have used multinomial ordered probit
and logit models for crash-severity analysis, which
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analyzes various categories of injury-severity levels in
order of severity ranging from no injury to a fatality (11,
12, 17, 21–23). Research has identified potential limita-
tions to this model because of constrained effects result-
ing from ordered modeling and underreporting of
crashes that have minor or no severe injuries (7).

Multinomial logit models (MNL) have been used by
researchers to address the above issues as MNL models
‘‘consider three or more outcomes and do not explicitly
consider the ordering,’’ (23). Researchers have used this
model to analyze motorcycle rider accident severity in
single-vehicle crashes (15), develop probabilistic models
of motorcyclists’ injury severities for single and multi-
vehicle crashes (7), compare severity of motorcycle injury
by crash types (19), analyze differences in factors that
affect severity of motorcyclist’s crash injuries (16), and
predict the probability of crash severities (10).

Mixed logit analysis models allow for ‘‘heterogeneous
effects and correlation in unobserved factors’’ (19) and
have been used to examine crash-specific factors (crash
factors, roadway and environment conditions, and vehi-
cle attributes) on two-vehicle crash-severity outcomes
involving motorcycles (14).

Log linear modeling provides ‘‘measures of the magni-
tude, direction and statistical significations of main
effects’’ and ‘‘interactions among a set of categorical
variables.’’ Haque et al. utilized log linear modeling to
investigate effects of traffic, environmental, and roadway
factors on roadway crash in Singapore to establish influ-
ential factors in various location types (24). Other meth-
odological approaches include Empirical Bayesian
analysis and stepwise logic regression (8, 25, 26). It is
important to note that conventional statistical models
are good at statistical inference. The common limitation
of these methods is poor prediction accuracy. In addi-
tion, the models are based on assumptions. Violations of
any of the assumption will produce biased results.

Overview of Deep Learning Method Analysis

Within the field of data analysis, there are two signifi-
cantly differing opinions regarding its appropriate
treatment—roughly categorized as data or statistical
modeling and algorithmic modeling or machine and deep
learning (27). The data modeling approach transcribes to
the belief that an underlying stochastic process has gen-
erated the data, such that the response variables can be
related to a set of predictor variables. In order to evalu-
ate the model’s success, this approach would apply
goodness-of-fit tests based around established and accep-
table margins of certainty. In contradiction, algorithmic
modeling focuses on the process of understanding the
unknown by minimizing the error rate through a black
box algorithmic model.

Although deep learning has not been widely used in
past studies, many studies have used machine learning
and data mining algorithms in transportation safety
analysis (28–40). Deep learning is a branch of artificial
intelligence that attempts to model complex information
through a series of processing layers. Although deep
learning has recently become the new primary focus
within the artificial intelligence community, the models
and ideas behind this technique have been discussed for
over half a century.

In the field of transportation engineering, the majority
of statistical work could be shown to fall into the cate-
gory of data modeling. Although there are not similar
papers in deep learning among the established literature
for motorcycle safety, there are examples of how deep
learning can be applied to other transportation engineer-
ing problems through traffic data imputation, short-term
traffic flow prediction, vehicle classification, and sustain-
able guideline development. Duan et al. highlight the
importance of clean and complete traffic datasets, as the
growing sensor infrastructure is generating ubiquitous
data for analysis (41). While Duan et al. were interested
in the imputation of missing data, Polson et al. focused
on the prediction given short-term conditions (42). Yu
et al. developed a fine-grained vehicle classification
approach that applied a convolutional neural network
with a joint Bayesian network to classify a vehicle similar
to the methods applied for classifying a face (43).

Data Processing

The master database created for this analysis includes
10,099 motorcycle-involved crashes from the police-
reported crash data in 2010–2014, Louisiana. This study
mainly focused on at-fault motorcycle riders. Louisiana
crash data contains a variable named ‘‘Vehicle Number,’’
in which 1 denotes at-fault riders. The final dataset of at-
fault motorcycle crashes included 6,853 crashes. This
study analyzes only at-fault motorcycle rider-involved
crashes because not-at-fault rider crashes involve other
vehicle drivers’ driving traits, which is outside the scope
of the current study. The severity of crashes is recorded
as five injury levels (commonly known as KABCO injury
scale): fatality (K), incapacitating injury (A), non-
incapacitating injury (B), possible/complaint injury (C),
and no injury (O). The fatal injury category includes
crashes that result in death within 30 days of the crash.
The incapacitating injury prevents the injured person
from normal daily work. The non-incapacitating injury
includes evidence of significant injury during police
reporting. The possible injury indicates complaints of
pains or stresses with no physical evidence. No-injury
crashes, also known as Property Damage Only (PDO),
do not involve any injury.
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To determine important variables, past studies have
been consulted. A wider list of variables has been selected
in the preliminary analysis. As a result of lack of adequate
information (for example, blood alcohol content level of
motorcycle riders), some of the variables were not
explored for the final analysis. The final dataset contains
16 predictors of the dataset with 79 levels, of which three
are numerical, and 13 are categorical (76 levels). The gen-
eral findings from the numerical variables are following:

� The median value of crash hour is 4 p.m., which
may be because of the peak-hour traffic volume
increase at the end of the workday.

� The median number of vehicles was two, indicat-
ing that motorcycle crashes more often are not
single-vehicle crashes.

� Lastly, the median rider age was 39, which may be
because of the higher number of middle-aged
motorcycle riders compared with younger riders.
Regardless, young riders have been found to have a
higher crash likelihood compared with older riders.

Table 1 lists descriptive statistics of the categorical
variables used in the final analysis. As this study focuses
on at-fault motorcycle rider crashes, the number of
crashes and the number of at-fault motorcycle riders are
same. Of the total 6853 crashes, 4.6% crashes were clas-
sified as fatal crashes, 74.1% are classified as injury
crashes and the rest of these crashes are PDO. Sixty-two
percent of crashes occurred more frequently on two-lane
rural roadways that did not have a dividing barrier,
which is similar to previous findings in the literature.
Motorcycle crashes were also more likely to occur on
straight level roadways (74.9%), but it is important to
note that 15.6% occurred on curve level roadways, a fea-
ture which has been shown to impact on crash severity.
A majority of crashes occurred during daytime and clear
weather conditions, which correlates with previous find-
ings that suggest higher speeds are more common during
clear weather. Motorcycle crashes were more likely to
occur over the weekend (Friday–Sunday) and over half
of crashes analyzed, 52.3%, involved a rider being
thrown from the motorcycle, which is likely because a
motorcycle offers a rider no protection. Localities with
business entities show high likelihood of motorcycle
crash involvements. Lastly, nearly 27% of crashes
involved ‘‘driver inattention’’ compared with only 3.6%
of crashes that involved alcohol-impaired driving.

Deep Learning

History

The history of artificial neural networks dates back to
1950. Rosenblatt’s Perceptron algorithm was the earliest
example of an artificial neural network (ANN). In the

Table 1. Descriptive Statistics of Categorical Variables

Category Count %

Road condition
No abnormalities 6374 93.0%
Animal in roadway 110 1.6%
Construction, repair 75 1.1%
Loose surface material 68 1.0%
Object in roadway 48 0.7%
Other types 178 2.6%

Roadway type
Two-way road with no physical separation 4247 62.0%
Two-way road with a physical separation 1667 24.3%
One-way road 687 10.0%
Two-way road with a physical barrier 218 3.2%
Other types 24 0.5%

Highway type
State hwy 2751 40.1%
City street 1504 21.9%
U.S. hwy 1092 15.9%
Parish road 887 12.9%
Interstate 615 9.0%
Toll road 4 0.1%

Locality type
Business continuous 1931 28.2%
Business, mixed residential 1854 27.1%
Residential district 958 14.0%
Residential scattered 950 13.9%
Open country 844 12.3%
Manufacturing or industrial 145 2.1%
Other types 171 2.5%

Alignment type
Straight-level 5131 74.9%
Curve-level 1066 15.6%
Straight-level-elevated 142 2.1%
On grade-curve 137 2.0%
Curve-level-elevated 132 1.9%
On grade-straight 122 1.8%
Other types 123 1.8%

Lighting condition
Daylight 4733 69.1%
Dark—continuous street light 1025 15.0%
Dark—no street lights 687 10.0%
Dark—street light at intersection only 194 2.8%
Dusk 151 2.2%
Dawn 51 0.7%
Other types 12 0.2%

Weather condition
Clear 5762 84.1%
Cloudy 820 12.0%
Rain 206 3.0%
Fog/smoke 34 0.5%
Other types 31 0.4%

Collision type
Single vehicle 2578 37.6%
Rear end 1317 19.2%
Right angle 908 13.2%
Left turn—opposite direction 445 6.5%
Sideswipe—same direction 442 6.4%
Other types 1163 17.0%

Day of the week
Saturday 1352 19.7%
Sunday 1114 16.3%

(continued)
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earlier stages, Perceptron failed to approximate many
nonlinear decision functions. A solution was developed
later by stacking multiple layers of linear classifiers,
known as multilayer perceptron, to approximate non-
linear decision functions. Because of a lack of computa-
tional power, ANN faced a slower pace of development
during 1990–2000. Since late 2000, ANN has seen explo-
sive progress as a result of parallel processing. ANN pro-
cesses many parameters and approximates nonlinear
functions. For a very deep and complex problem, ANN
can provide a reasonable estimate. This new branch of
complex problem solving is known as ‘‘deep learning’’
Many researchers consider learning to be deep if ANN
has more than two layers. There are other interpretations
of the word ‘‘deep,’’ including: (1) deep learning can pro-
vide solutions for unlabeled data, and (2) deep means
autonomous (44–47). Figure 1a shows the timeline of the
scientific evolution of deep learning. This study used the
‘R with H2O.ai’ platform to perform the analysis (48).

Theory

Interested readers can consult these references for a bet-
ter understanding of deep learning architecture (43–46).

For the sake of easy interpretation, only a brief overview
of deep learning concept is provided here. Consider a set
of data points x 1ð Þ, x 2ð Þ, . . . , x mð Þ� �

in which each data
point has many dimensions. These data can be mapped
to another set of data points z 1ð Þ, z 2ð Þ, . . . , z mð Þ� �

, where
zs have lower dimensionality than xs. In place of using
high-dimensional x, low-dimensional z can reconstruct x.
To map data back and forth, a relationship can be
developed:

z ið Þ=W1x ið Þ+ b1 ð1Þ

~x ið Þ=W2x ið Þ+ b2 ð2Þ

If xi is a two-dimensional vector, it is possible to
visualize the data to find W1, b1 and W2, b2 analytically
as the experiment above suggested. For high-dimensional
data, the visualization is not possible. As the target is to
attain ~x ið Þ to estimate x ið Þ, an objective function can be
used:

J W1, b1,W2, b2ð Þ=
Xm

i= 1

~x ið Þ � x ið Þ
� �2

=
Xm

i= 1

W2x ið Þ+ b2 � x ið Þ
� �2

=
Xm

i= 1

W2 W1x ið Þ+ b1

� �
+ b2 � x ið Þ

� �2

ð3Þ

which can be minimized using stochastic gradient des-
cent. This concept is also known as a linear autoencoder
(as shown in Figure 1b).

An example of a deep network with two hidden layers
(W1, and W2) is shown in Figure 1b. To train the neu-
rons, an autoencoder (with parameters W1 and W 0

1) can
be trained. Later W1 will be used to compute the values
for the neurons for all data, which will then be used as
input data to the subsequent autoencoder. This autoen-
coder uses the values for the neurons as inputs, and
trains an autoencoder to predict those values by adding
a decoding layer with parameters W 0

2.

Model Development

The current study has developed a deep learning frame-
work named ‘‘DeepScooter.’’ This framework is based
on five major steps: (1) finalize the dataset by selected
contributing factors, (2) divide the dataset into training,
validation, and text data, (3) use a basic deep learning
model and check model accuracies for training, valida-
tion, and text data, (4) perform tuning to get better esti-
mates with higher accuracies, and (5) select the final
model. Figure 2 illustrates the general framework of
DeepScooter.

A detailed step-by-step procedure is described below:

Table 1. (continued)

Category Count %

Friday 1099 16.0%
Thursday 980 14.3%
Wednesday 801 11.7%
Tuesday 768 11.2%
Monday 739 10.8%

First harmful event
Motor vehicle in transport 4260 62.2%
Ran off road right 680 9.9%
Overturn/rollover 405 5.9%
Other non-collision 309 4.5%
Crossed median/centerline 241 3.5%
Ran off road left 239 3.5%
Other types 719 10.5%

Rider ejection
Totally ejected 3584 52.3%
Not ejected 2665 38.9%
Partially ejected 451 6.6%
Unknown 153 2.2%

Rider condition
Normal 3968 57.9%
Inattentive 1785 26.0%
Unknown 588 8.6%
Drinking alcohol—impaired 244 3.6%
Distracted 119 1.7%
(Other) 149 2.2%

Rider severity
Possible/complaint 2319 33.8%
Non-incapacitating/moderate 2280 33.3%
No injury 1460 21.3%
Incapacitating/severe 478 7.0%
Fatal 316 4.6%
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� The dataset has been divided into three random
subsets: 50% of the data was used for training,
25% was used for validation, and 25% was used
for a test. All data categories (numerical, categori-
cal, and ordinal) can be used as explanatory vari-
ables. The final matrix incorporates 6,853 rows
with 79 attribute levels. The deep learning will
consider training data to develop the learning
framework.

� This study developed an initial model (Model 1)
by using training data with one pass (known as
epoch) over the training data. For Model 1, the
size of hidden layer is 2.

� For Model 2, stopping criteria was applied. A
larger number of epochs (100,000) was used to
refine the model. For Model 2, the size of hidden

layer is 32. It was found that the precision accu-
racy was not improving after 100 epochs.

� For the final model (Model 3), the deep learning
algorithm was tuned with an adaptive learning algo-
rithm. Two tuning parameters (r and e) balance the
global and local search efficiencies. The parameter r

is the similarity to prior weight updates, and e is a
parameter that makes optimization work beyond
local optima. Adaptive learning rate algorithm uses
stochastic descent optimization. For the final model,
these parameters were used:

8 Epochs: 100

8 Hidden layers: 128

8 Early stopping: enabled

8 Annealing rate: 2 3 10�6

8 Samples=350,000

Figure 1. (a) Timeline of deep learning (reproduced from 44) and (b) deep learning algorithmic concept.
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� Once the classifier has been trained (i.e., the para-
meters of the different layers of the model have
been fixed), the quality of the classification out-
puts predicted by the model are compared against
the correct ‘‘true’’ values stored in a labeled data-
set. The confusion matrix describes the prediction
accuracies and misclassification (error) rate. The
outputs of the confusion matrix are reported in
Tables 2 and 3.

Table 2 summarizes the results of Model 1 in confu-
sion matrix format. For training data, the overall accura-
cies are 92.5%. Higher inaccuracies are found in
identifying non-incapacitating injuries. For the valida-
tion dataset, the accuracy is lower than training data
(around 90%). Both ‘‘no injury’’ and ‘‘non-incapacitating
injury’’ show higher misclassification rates.

Table 2 also lists the results of Model 2 in confusion
matrix format. For training data, the overall accuracies
are improved by 3.5% (Model 1: 92.5% vs. Model 2:
96%). ‘‘No injury’’ showed a higher misclassification rate
(around 8%). For the validation dataset, the accuracy
was lower than training data (around 94%). ‘‘No injury’’
showed a higher misclassification rate (around 12%). For
Model 1 and Model 2, results of text data are not shown.

Table 3 summarizes the results of Model 3 (training,
validation, and test) in confusion matrix format. The
findings include:

� For training data, the estimation accuracy of the
training data was nearly 100%. Out of a sample

size of 3440, the model can accurately classify
3437 crash severities.

� For validation set, the estimation accuracy was
not improved from the accuracy derived in Model
2. ‘‘Non-incapacitating injury’’ showed higher
misclassification.

� For the test set, the misclassification rates are 8%
and 7% for Model 1, and Model 2, respectively.
Model 3 results showed the lowest misclassifica-
tion rate for test data. ‘‘No injury’’ showed higher
misclassification for text data.

Figure 3a shows the overall misclassification rates of
three models used for three sets of data. The training set
showed that misclassification rate decreases sharply from
7% to 0%. For the validation set, the decrement is slower
(from 9% to 6%). Test data also observed a slower
decrease (from 8% to 6%). Overall, Model 3 performed
better than the other two models. However, the valida-
tion set showed slightly a lower misclassification rate
(5.79%) in Model 2 than the misclassification rate of
Model 3 (6.25%).

Figure 3, b–e, illustrates comparison plots (Model 2
vs. Model 3) of the classification error and root mean
square error (RMSE) over all epochs and samples. The
values closer to zero indicate better model fit.

This study has applied two methods, multinomial
logistic regression (statistical model) and support vector
machine algorithm (machine learning method), on the
same dataset. The highest prediction accuracy was found

Figure 2. Framework of DeepScooter tool.
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as 78%, which is far below the attained accuracy from
the deep learning method. The main contribution of this
paper is the development of a deep learning framework to
perform severity analysis of motorcycle crashes. Although
the present study is focused on the improvement of the

classification accuracy, a sound understanding of the
explanatory variables would be beneficial. The heat chart
shows (see Table 4) the conditional probability of signifi-
cant variables from final deep learning model (Model 3).
The color intensity (from red to white) varies along each

Figure 3. (a) Misclassification (error) rate in three models; (b) Model 2 classification error; (c) Model 2 RMSE; (d) Model 3 classification
error; and (e) Model 3 RMSE.
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row. For example, around 90% of cases in fatal motor-
cycle crashes involve rider ejection. Fatal crashes are
highly associated with rider ejection, a two-way road with
no physical separation, single vehicle, curve aligned road-
ways, and weekends. Residential areas were not highly
skewed in crash fatalities; this may be because of lower
posted speeds in residential neighborhoods. Two-way
roadways (both divided and undivided) are over-
representative in severe and fatal crashes.

Conclusion

Many studies on motorcycle crash data have been con-
ducted to understand the contributing factors that
influence the severity of crashes. In 2014, the U.S. expe-
rienced 976 motorcycle crash-related fatalities. This
statistics was more than twice the number of motor-
cycle rider fatalities that occurred in 1997. This unac-
ceptably high number of motorcycle crashes calls for
research to be conducted with additional resources and
in newer directions. The 2010–2014 at-fault motorcycle
rider crash data for Louisiana were used in this study.
The findings include:

� The descriptive statistics show that motorcycle
crashes generally feature high proportions in
weekends, two-lane rural roads with no physical

barriers, rider ejection, daylight, and clear weather
conditions.

� The study confirms that, in modeling crash sever-
ity, the developed deep learning framework
DeepScooter can estimate accurately up to 100%.
The accuracy rate for test data ranges from 92%
to 94%. The framework has sufficient reproduci-
bility for use with a larger set of motorcycle crash
data. For example, it can work as a suitable
framework for identifying significant factors from
FHWA Motorcycle Crash Causation Study
(MCCS) (49).

� The conditional probability chart from
DeepScooter shows that fatal crashes are more
likely to be associated with rider ejection, a two-
way road with no physical separation, single vehi-
cle, curve aligned roadways, and weekends.
Residential areas were not highly skewed in fatal
crashes, as a result of lower posted speeds. In
addition, younger riders are the vulnerable group
in fatal motorcycle crashes.

The advantage of using a deep learning tool is its effi-
ciency and high prediction accuracy. As this method
does not require holding any statistical assumption, there
is no consequence of biased results because of the viola-
tion of assumptions. However, this method has several
limitations. One limitation of deep learning models is

Table 4. Conditional Probabilities of Top Ten Attributes

Rider ejected 89.9 84.3 67.2 48.4 16.5 

Two-way with no physical separation 62.3 62.3 63.2 61.6 60.4 

State highway 48.4 29.7 38.7 43.9 38.1 

Single vehicle 42.1 32.8 45.5 39.4 32.2 

Two-way with physical separation 25.6 24.1 24.3 24 24.7 

Business and mixed residential 24.1 28.2 26.4 27.7 35.5 

Residential scattered 23.1 27.4 26.4 27.2 27.2 

Saturday 22.5 21.3 18.4 20.9 18.8 

Curve alignment 20.6 17.4 17.6 16.2 9.7 

Sunday 19.9 19 17.6 14.5 15.2 

 K A B C O 
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their low explanatory command because of the black
box approach. In transportation safety research, inter-
pretability is considered as one of the major constraints
in adapting sophisticated deep learning models in real
life. The current developed framework has the flexibility
of reproduction that can be used by other researchers. It
is anticipated that the DeepScooter framework and the
findings will provide noteworthy contributions to the
reduction of motorcycle crashes and crash-involved
severities.
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